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A B S T R A C T

Gamma-glutamyl transferase (GGT) is a ubiquitous cell surface enzyme that cleaves extracellular glutathione (G-
SH) or other gamma-glutamyl compounds. GGT serves to increase the availability of amino acids, primarily
cysteine, for intracellular G-SH synthesis and plays a crucial role in maintaining G-SH homeostasis and defense
against oxidative stress in organisms. Measurement of circulating GGT activity is widely used for the diagnosis of
liver and obstructive biliary diseases and as an indicator of alcohol consumption. Epidemiological studies suggest
an association between elevated GGT activity level and a risk of incident coronary heart disease (CHD) or CHD-
related mortality. Elevated GGT activity level is associated with a plethora of cardio-metabolic risk factors,
including traditional cardiovascular risk factors, metabolic syndrome, systemic inflammation, oxidative stress
burden and various comorbidities that incur a negative impact on patient risk profile and prognosis.
Experimental studies and studies of human atherosclerotic plaques have revealed not only the presence of
catalytically active GGT in atherosclerotic plaques, but also a correlation between GGT activity and indices of
plaque instability, suggesting direct involvement in the pathophysiology of atherosclerosis and related clinical
events via promotion of pro-oxidant reactions by the enzyme. However, it remains unknown whether GGT plays
a direct role in the pathophysiology of atherosclerosis and CHD or is merely a correlate of coexisting cardio-
vascular risk factors. The exact molecular mechanisms of GGT participation in atherosclerosis or CHD and as-
sessment of GGT-lowering therapies, as well as their impact on clinical outcomes, remain to be investigated in
longitudinal studies.

1. Introduction

Gamma-glutamyl transferase (GGT; Enzyme Commission number
[EC] 2.3.2.2.) is a ubiquitous enzyme that plays a crucial role in the
metabolism of glutathione (G-SH) - the most important cellular anti-
oxidant in humans. While the current nomenclature recommends the
use of the name gamma-glutamyl transferase, some authors continue to
use the older name gamma-glutamyl transpeptidase. Although cleavage
of G-SH by extracts obtained from rat kidney was initially de-
scribed> 80 years ago [1,2], subsequent studies by Hanes et al. [3] in
sheep kidney extracts are credited with the characterization of the
transpeptidase reaction and nomenclature of the enzyme. The mea-
surement of circulating GGT activity is widely used for the diagnosis of
liver and obstructive biliary diseases and as a marker of alcohol con-
sumption. Aside from its diagnostic uses, GGT has attracted interest
mainly for its association with diabetes and metabolic syndrome,
cancer, atherosclerosis, and cardiovascular disease. The primary focus
of this review is to summarize the current status of knowledge

regarding the association of GGT with atherosclerosis and coronary
heart disease (CHD) risk. The association between GGT and other car-
diovascular diseases such as congestive heart failure, arterial hy-
pertension, embolic disease, stroke, arrhythmias or sudden cardiac
death and diabetes has been recently reviewed [4–7] and is therefore
not addressed in the current review. After a brief description of the
structure and metabolic role of GGT, the review will focus on epide-
miological evidence linking GGT with CHD as well as the pathophy-
siological mechanisms of GGT involvement in atherosclerosis or CHD.

2. GGT structure and function

GGT is a cell surface N-terminal nucleophile hydrolase that cleaves
extracellular G-SH and gamma-glutamyl compounds (glutathione-con-
jugates or other gamma-glutamyl substrates) from various sources. In
fact, GGT has wide specificity and cleaves the gamma-glutamyl bond in
all substrates in which the glutamate moiety is unfettered. GGT cleaves
G-SH by transfer of the gamma-glutamyl moiety from G-SH to various
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acceptors, including amino acids, peptides or water releasing gamma-
glutamyl products (or free glutamate) and dipeptide cysteinyl-glycine,
the latter of which is further hydrolyzed by dipeptidase into free cy-
steine and glycine. Apart from reduced G-SH, the other known sub-
strates of GGT are oxidized G-SH (G-S-S-G), glutathione-S-drug com-
pounds, leukotriene C4, glutathione-S-nitric oxide and gamma-
glutamyl-taurine [8].

Physiological functions of GGT are only partially known. The most
important metabolic action of the enzyme is cleavage of G-SH. The high
expression of the enzyme on the apical surface of tissues with transport
function – tubular structures such as the proximal tubules of the ne-
phron or the hepatocyte microtubular system – has led to the hypoth-
esis that GGT is involved in the transport of amino acids across cell
membranes [9]. However, this hypothesis is weakened by documenta-
tion of normal amino acid transport in humans and animals with GGT
deficiency. According to current knowledge, GGT is important because
it increases the availability of amino acids such as cysteine [10], a rate
limiting substrate for intracellular G-SH synthesis (glutamate and gly-
cine are readily supplied in the cell by products of glycolysis). The high
activity of GGT on the surface of cells lining the proximal kidney tu-
bules enables cleavage of G-SH present in glomerular filtrate, pre-
venting its elimination from the organism, thereby conserving amino
acids - particularly cysteine – for its intracellular synthesis [10]. High
G-SH concentrations in the plasma and urine of patients with GGT
deficiency [11] – a very rare autosomal recessive disease [12] – and
GGT gene knockout mice [13] have been reported. In addition, GGT is
involved in the metabolism of leukotrienes (namely conversion of leu-
kotriene C4 into leukotriene D4), xenobiotics, neurotransmitters (con-
version of gamma-glutamyl-taurine into taurine) and modulation of
nitric oxide signaling [14–16]. In various pathological conditions, GGT
may be mislocalized and may act on substrates in locations such as
serum or interstitial fluids where involvement of the enzyme in pa-
thological processes like ischemia-reperfusion injury, airway hyper-re-
activity in asthma, drug nephrotoxicity (through conversion of drug-
conjugates to nephrotoxins) or resistance to antitumor drugs has been
suggested [10,17]. GGT expression in atherosclerotic plaques is covered
in detail later in this review.

Mammalian GGT is a heterodimeric glycoprotein anchored to the
outer surface of the plasma membranes of all cells through a small N-
terminal transmembrane domain. Human GGT is synthetized as a single
569 amino acid residue polypeptide which is enzymatically inactive.
The activation process consists of a post-translational autocleavage re-
action catalysed by threonine 381 residue. Mature GGT has a molecular
weight of 68 kDa and consists of 2 subunits: a large subunit weighing
46 kDa, responsible for enzyme anchorage on cellular membranes
through a hydrophobic transmembrane domain, and a small subunit
weighing 22 kDa that carries the catalytic center. The mature enzyme
has 7 glucan moieties linked by N-glycosylation bonds localized on the
external surface of the protein which are important for proper protein
folding and activation proces, in addition to 4 cysteine residues, which
stabilize the structure through formation of disulfide bonds [18–20].
The degree of glycosylation differs between molecules, with resulting
variations in molecular weight, tissue specificity or disease-related
molecular variants of the enzyme. Details of structural organization of
GGT are described elsewhere [18,20,21]].

Human GGT is encoded by a multigene family consisting of 7 dif-
ferent genes or pseudogenes located on chromosome 22q11 [22]. The
best characterized is the GGT 1 gene, which encodes a single poly-
peptide that undergoes post-translational changes to form a mature
enzyme [12]. GGT 1 gene transcription is controlled by multiple tan-
demly positioned promoters [23,24]. These promoters and alternative
splicing contribute to diversity of molecular forms and tissue specificity
of GGT. The GGT 2 gene represents a duplication of GGT 1 gene with
97% nucleotide analogy between both genes and 94% amino acid
analogy between their polypeptide products [10]. Some studies have
shown that polypeptide products of the GGT 2 gene fail to auto-activate

and anchor on plasma membranes, resulting in rapid degradation by
cytoplasmic proteases [25]. The only other GGT gene that produces a
polypeptide with enzymatic activity is GGT 5 gene (formerly known as
γ-glutamyl leukotrienase due to its ability to cleave glutathione-S-con-
jugate leukotriene C4 to leukotriene D4). The GGT 5 gene polypeptide
product has 40% amino acid analogy with the GGT 1 gene product but
only 4% enzymatic activity [16,26]. A detailed analysis of genetic
variants of the GGT gene family can be found in a review by Heis-
terkamp et al. [12].

Regulation of GGT expression is complex, poorly understood and
outside the scope of this review. However, there is ample evidence that
GGT gene expression in animals and humans is controlled by redox
mechanisms and signal pathways activated in response to oxidative
stress [17,27]. Alcohol is a known inducer of GGT gene expression,
possibly through increased oxidative stress caused by its consumption
[28]. GGT deficiency is an extremely rare condition, being described in
fewer than 10 patients worldwide; however, so far, no mutations in
GGT gene 1 have been reported [12]. All described patients with GGT
deficiency have had glutathionuria. Study of three patients with GGT
deficiency showed complete absence of leukotriene D4 synthesis in
monocytes [29]. Experimental studies have shown an up 2500-fold
increase in urine G-SH and a 5-fold reduction in plasma cysteine con-
centration in GGT knockout mice compared with their wild-type
counterparts [13]. These data clearly illustrate the central role of GGT
in G-SH and cysteine homeostasis.

In healthy humans, measurable GGT activity tends to be low
(< 60 U/L). Although the source of circulating GGT is unclear and
there is no evidence to support a correlation between circulating and
tissue enzyme levels, it is thought to originate predominantly from the
liver. The possibility that a portion of GGT may originate from ather-
osclerotic plaques has also been suggested [30]. Earlier investigations
have identified both amphiphilic (either associated with plasma lipo-
proteins or in the form of multi-enzyme complexes) and hydrophilic
forms of the enzyme [31]. It is now known that GGT circulates in
multiple forms, differing mainly in the degree of glycosylation. It is
estimated that 60–80% of serum GGT from patients with hepatobiliary
diseases circulates bound to plasma lipoproteins. GGT activity shows a
great degree of variability and is influenced by both genetic and en-
vironmental factors [30,32]. Pathological processes, particularly in
organs with the highest activity of the enzyme, may lead to elevated
GGT levels in the circulation. Circulating GGT levels are markedly in-
creased in patients with liver disease. It has been suggested that the
origin of circulating GGT in the presence of cholestatic disorders is of
biliary rather than hepatic origin [33]. Franzini et al. [34] and more
recently, Fornaciari et al. [35] have identified 4 GGT fractions with
different molecular weights: big GGT (with a molecular weight of
2000 kDa), medium GGT (with a molecular weight of 1000 kDa), small
GGT (with a molecular weight of 200 kDa) and free GGT fraction (with
a molecular weight of 70 kDa). Big GGT consists of membrane micro-
vesicles (microparticles or exosomes) and may be a precursor for
smaller fractions (medium and small variants), whereas free GGT re-
presents a free soluble form of the enzyme. It has been shown that at
least part of GGT does not need a carrier such as plasma lipoproteins or
albumin. It has been proposed that GGT fractions may differ in their
diagnostic specificity and may, therefore, help to differentiate between
various disease processes despite similar total values [35]. However,
this requires further study.

3. Epidemiological evidence

Epidemiological studies suggest an association between elevated
GGT activity and almost all aspects of cardiovascular disease. The most
extensively investigated aspect is the association of GGT with athero-
sclerosis and the risk of developing CHD.
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3.1. Association of GGT with incident CHD and CHD-related mortality

A number of population-based studies have investigated the asso-
ciation between GGT and stroke, sudden death or liver disease, but in
these studies GGT was considered as a surrogate of alcohol consump-
tion [36–38]. The British Regional Heart Study assessed the association
between serum GGT activity and cardiovascular risk factors, CHD and
all-cause mortality in 7613 middle-aged British men followed for
11.5 years [39]. Of a total of 876 deaths from all causes, 449 (51%)
were attributed to cardiovascular disease, with CHD-related deaths
accounting for 80% of these. After full adjustment for an array of car-
diovascular risk factors and alcohol intake, a significant association
remained between GGT and the risk for all-cause mortality (adjusted
relative risk [RR] = 1.22, 95% confidence interval [CI] 1.01 to 1.42)
and CHD-related mortality (adjusted RR = 1.42 [1.12–1.80]), with
both risk estimates calculated for GGT> 24 U/L [the 5th quintile]
versus GGT< 24 U/L. The risk of CHD-related mortality was higher
(RR = 1.67 [1.03–2.69]) in subjects with pre-existing CHD, particu-
larly in men with definite prior myocardial infarction [39].

More recently, the Framingham Heart Study, investigated the as-
sociation between circulating GGT levels and the risk of new-onset
metabolic syndrome, incident cardiovascular disease –defined as fatal
or non-fatal CHD, peripheral or cerebrovascular disease, or heart failure
– and death in 3451 participants over a mean follow-up period of 19-
years [40]. Incident cardiovascular disease increased from 10.5% in
subjects with GGT levels in the 1st quartile, and to 23.8% in subjects
with GGT levels in the 4th quartile. The adjusted hazard ratios [HR] for
new-onset metabolic syndrome, incident cardiovascular disease or
death increased by 26% (P < 0.05), 13% (P ≤ 0.01) and 26%
(P ≤ 0.001), respectively, for each standard deviation increment in the
log-GGT [40]. Individuals in the highest GGT quartile showed a 67%
increase in the adjusted risk for incident cardiovascular disease. The
study emphasized the role of GGT as a marker of metabolic and car-
diovascular risk [40].

A third large study, the British Women's Heart and Health Study,
investigated the association between GGT level and incident CHD or
stroke in 2961 women without CHD or stroke at baseline over 4.6-years
of follow-up. Overall, there were 151 cases of incident CHD, translating
into a rate of 11.6 incident cases per 1000 women-years. The age-ad-
justed risk for incident CHD was increased by 28% (HR = 1.28
[1.01–1.62] per unit increment in log-GGT). However, the GGT-in-
cident CHD association was attenuated after full adjustment in a mul-
tivariable model (adjusted HR = 1.15 [0.88–1.48] per unit increment
in log-GGT) [41]. Finally, a meta-analysis integrated in the same study
which included 10 prospective studies – 9 cohort and 1 case-control
study – including> 1 million participants confirmed the association
between GGT and incident CHD. Pooled analysis of age or age plus sex
adjusted studies (6 studies) yielded a HR of 1.53 [1.34–1.76];
P < 0.001 per unit increment in natural log-GGT. Pooling fully-ad-
justed risk estimates (as reported in included publications) yielded a HR
of 1.20 [1.02–1.40]; P < 0.001, implying a 20% increase in the ad-
justed risk for an association between GGT and CHD [41]. It must,
however, be acknowledged that the meta-analysis by Fraser et al. [41]
was limited by high heterogeneity between included studies, marked
differences with respect to length of follow-up (ranging from 4.6 to
19.1 years) and the degree of adjustment for cardiovascular risk factors
and other confounders. Notably, when two studies of Asian populations
were excluded, the degree of heterogeneity was substantially decreased.

A number of subsequent large studies offered further convincing
evidence in support of an association between elevated GGT and car-
diovascular or CHD-related mortality. A central European cohort of
283,438 individuals investigated the association of GGT with mortality
over a median follow-up of 7.6 years. GGT activity was divided into 5
categories as follows: normal low (< 9 U/L for women;< 14 U/L for
men); normal high (9–17; 14–27 U/L); moderately elevated (18–26;
28–41 U/L); increased (27–35; 42–55 U/L); and highly elevated (≥36;

≥56 U/L). The first category served as a reference. Overall, 17,163
(6.1%) deaths were attributed to cardiovascular disease. Of these, 8009
(3295 deaths in women and 4714 deaths in men) were caused by CHD.
The adjusted HRs for CHD-related mortality for the 2nd to 5th cate-
gories compared with the 1st (normal low) were 1.2 [1.1–1.3], 1.2
[1.1–1.4], 1.4 [1.2–1.6] and 1.4 [1.2–1.5] in women and 1.2 [1.1–1.3],
1.4 [1.3–1.5], 1.6 [1.4–1.7] and 1.7 [1.6–1.9] in men, respectively
(P < 0.001 for all risk comparisons) [42]. The study showed that GGT
was associated with mortality in men and women, with a dose-response
relationship between GGT and mortality risk. The association between
GGT and mortality was stronger in younger subjects (< 30 years of
age) [42].

In another study, longitudinal GGT changes over a period of
6.9 years were assessed in a population-based cohort of 76,113 Austrian
men and women with serial GGT measurements and prospective follow-
up for a median of 10.2 years. For each unit increment in log scale of
baseline GGT, the adjusted risk for CHD-related mortality increased by
80% in men (adjusted HR = 1.80 [1.32–2.46]; P < 0.001) and 40% in
women (adjusted HR = 1.40 [0.97–2.02]; P = 0.07). An increase in
GGT of> 9.2 U/L over 7 years was associated with increased CHD
mortality in men (adjusted HR = 2.22 [1.68–2.93]; P < 0.001) and
women (adjusted HR = 1.45 [1.01–2.09]; P= 0.046), with both risk
estimates calculated per GGT log-unit increase with GGT as a time-
varying covariate [43]. In men, the risk of cardiovascular mortality was
significantly higher in those with an increase in GGT during follow-up
(adjusted HR = 1.40 [1.09–1.81]) compared with these with stable
GGT (defined as a change of −0.7 to 1.3 U/L over 7 years). The study
showed that an increase in GGT over time increases the risk of cardi-
ovascular and CHD mortality, independent of the baseline values of the
biomarker. The study also showed a stronger association between GGT
and mortality in younger compared with older subjects.

Several recent meta-analyses have summarized prospective studies
investigating the association between GGT and cardiovascular disease.
A 2013 meta-analysis that included 7 studies with 273,141 subjects
showed an association between elevated GGT and cardiovascular
mortality (RR = 1.52 [1.36–1.70]; P < 0.001) for the highest versus
lowest GGT quartiles and a RR = 1.76 [1.60–1.94]; P < 0.001 per unit
increment in log-GGT [44]. The association between GGT and cardio-
vascular mortality was not significant in the subgroup of subjects of
Asian origin. A meta-analysis from 2014 that included 20 studies and
1,054,181 subjects with 15,194 cardiovascular events showed a 23%
increase in the risk of cardiovascular disease per each standard devia-
tion increment in log-GGT (adjusted RR = 1.23 [1.16–1.29]) [45].
However, there is a higher degree of overlapping between the studies
included in both meta-analyses.

Summarizing the findings of these studies, epidemiological evidence
for an association between elevated GGT activity and the risk of in-
cident CHD and CHD-related mortality is strong. The association be-
tween GGT and increased risk of CHD or mortality is observed in both
sexes and seems to be stronger in younger subjects. Despite the asso-
ciation between GGT and the risk of CHD or mortality, there is no clear
evidence that elevated GGT is associated with a risk of acute coronary
events such as acute myocardial infarction [46]. Whether there are
differences in the strength of the association between GGT and CHD or
mortality according to geographic region – specifically, whether the
association is weaker in Asian populations – needs further research.

3.2. GGT and cardiovascular and metabolic risk factors

In earlier studies, GGT drew little attention as a marker of cardio-
vascular risk because it was considered merely a biochemical parameter
of excessive alcohol consumption [36–38]. However, two findings led
to the hypothesis that elevated GGT per se may signify an increased risk
for CHD, regardless of the level of alcohol consumption: first, the
finding of considerable variations in circulating GGT activity among
subjects consuming similar amounts of alcohol, and second, the
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discovery that moderate alcohol consumption reduces the risk of
myocardial infarction. Large epidemiological studies have also reported
a strong association between elevated GGT and almost all known im-
portant cardiovascular risk factors including older age, male gender,
body mass index, smoking, physical inactivity, elevated cholesterol,
elevated fasting triglycerides, elevated low-density lipoprotein choles-
terol, low high-density lipoprotein cholesterol, elevated blood pressure
and heart rate, diabetes, metabolic syndrome, elevated fasting blood
glucose, hyperuricemia, elevated C-reactive protein and in women,
menopause and the use of contraceptive drugs [47–50]. The Fra-
mingham Study found a close relationship between elevated baseline
GGT and the risk of new onset metabolic syndrome over a mean follow-
up of 19 years [40]. A recent meta-analysis of 10 prospective cohort
studies with 67,905 participants, including 6595 cases of incident me-
tabolic syndrome, reported a significant association between GGT and
metabolic syndrome (RR = 1.88 [1.49–2.38] for individuals in the
highest vs. lowest thirds of baseline GGT activity) [51]. The association
between GGT and most of the above-cited cardio-metabolic risk factors
remains significant after adjustment for alcohol consumption. The un-
derlying mechanisms for this association are poorly understood. How-
ever, several putative mechanisms underlying these associations may
be offered.

First, several studies have shown a close association between GGT
and insulin resistance in the setting of obesity, diabetes, and nonalco-
holic fatty liver disease (NAFLD) or in healthy men and women
[52–55]. On one hand, insulin resistance is associated with multiple
cardio-metabolic factors serving as a risk factor cluster [53]. On the
other hand, ample evidence implicates insulin resistance in all stages of
atherosclerotic disease, from prerequisite conditions like endothelial
dysfunction, to accelerated atherosclerosis progression, plaque vulner-
ability, and subsequent coronary events [56]. One angiographic study
demonstrated an association between insulin resistance and progression
of atherosclerosis in non-grafted coronary arteries 5 years after cor-
onary artery bypass surgery [57]. In this regard, insulin resistance may
be viewed as a bridging mechanism linking GGT with cardiovascular
risk factors and CHD.

Second, NAFLD is the most frequent hepatic disorder and the most
common cause of elevated levels of liver enzymes, including GGT [58].
It has been suggested that GGT may represent a link between fatty liver
and early atherosclerosis [59].The ongoing epidemic of obesity and its
close association with NAFLD is expected to increase the importance of
this morbid condition as a contributor to cardiovascular disease and in
particular, to CHD. NAFLD is considered the hepatic equivalent of
metabolic syndrome because of its association with atherogenic dysli-
pidemia, obesity, and type 2 diabetes [60]. In fact, NAFLD and meta-
bolic syndrome share common features including arterial hypertension,
insulin resistance, elevated triglyceride levels, increased small dense
low-density lipoprotein particles, low high-density lipoprotein levels,
hyperuricemia, impaired glucose tolerance, obesity, diabetes, chronic
inflammation, decreased adiponectin level, increased oxidative stress,
hypercoagulability, and impaired fibrinolysis [61]. Patients with
NAFLD have elevated levels of angiotensin II - a peptide hormone with
pro-oxidant activity that has been implicated in the generation of
oxygen-free species and production of pro-inflammatory mediators
[62]. Angiotensin II promotes progression of atherosclerosis in a
number of ways, including hemodynamic (pressure) effects, endothelial
dysfunction, inflammation, blood coagulability and plaque vulner-
ability [63], all of which are known to predispose to CHD or CHD-re-
lated mortality. A large Korean study showed that the association be-
tween GGT and cardiovascular mortality was attenuated by adjustment
for ultrasound diagnosed fatty liver [64], further supporting the role of
NAFLD as a bridging mechanism between elevated GGT and cardio-
vascular risk. Since cardiovascular disease remains the number one
cause of death among subjects with NAFLD, it has been proposed that
subjects with NAFLD may benefit from cardiovascular risk evaluation,
and potentially, regular cardiovascular disease risk surveillance [65].

Third, there is strong evidence of an association between elevated
circulating GGT activity and increased oxidative stress [27]. In addi-
tion, oxidative events have been linked to the pathogenesis of athero-
sclerosis and subsequent cardiovascular events [66,67]. This is intuitive
if one considers that increased oxidative stress increases the need for G-
SH, the intracellular synthesis of which is dependent on GGT. The
CARDIA (Coronary Artery Risk Development in Young Adults) study
[68] and the third National Health and Nutritional Examination Survey
[69] both showed an inverse association between GGT and circulating
antioxidants. Inverse associations between serum GGT concentration
and fruit intake or circulating levels of vitamin C or beta-carotene have
also been reported [68,70]. Conversely, higher meat consumption is
correlated with elevated GGT [68,71] potentially because of ingestion
of (heme) iron, which lays a pivotal role in redox reactions, leading to
generation of free oxygen species [72]. Positive associations have also
been reported between GGT and ferritin – a protein involved in iron-
storage [71,73,74]. Evidence from these studies is indirect in the sense
that elevated circulating GGT levels may reflect the cellular need for G-
SH for protection from heightened oxidative stress and excessive pro-
duction of oxygen free radical species. Nonetheless, circulating GGT has
been reported to correlate with F2-isoprostanes arising from perox-
idation of polyunsaturated fatty acids (primarily arachidonic acid),
which are widely accepted as in vivo markers of oxidative stress [48],
further supporting a link between GGT levels and the degree of oxi-
dative stress in organism. There is also evidence to suggest that redox
mechanisms play an important role in induction of GGT and that sig-
naling pathways such as Ras, ERK, p38MAPK and PI3K may also par-
ticipate in GGT gene expression [17]. Furthermore, the association
between alcohol consumption and GGT may be at least partly explained
by increased induction of oxygen free radical species by alcohol
[28].The possibility that GGT itself may behave as a pro-oxidant is
discussed later in this review.

Fourth, elevated GGT has been reported to be closely correlated
with markers of systemic inflammation – another important contributor
to atherosclerosis and CHD. In the third U.S. National Health and
Nutrition Examination Survey, serum GGT activity across all deciles
was positively associated with serum concentrations of C-reactive
protein after adjustment for race, sex, age, cigarette smoking, alcohol
intake, and body mass index [75]. A recent cross-sectional study of
5446 healthy, nondiabetic subjects reported an independent association
between GGT and high-sensitivity C-reactive protein, which was pre-
sent across the entire spectrum of risk and persisted after adjustment for
other cardiovascular risk factors [76]. A close correlation has also been
reported between GGT, C-reactive protein and metabolic syndrome
independent of age, smoking status, alcohol consumption, uric acid, or
renal function [77].

Fifth, elevated GGT has been shown to be associated with additional
comorbidities and risk factors (or markers) for atherosclerosis and CHD,
including incident and chronic kidney disease [78,79], coronary calci-
fication [80] or environmental (air) pollutants [81]. Chronic kidney
disease is a well-recognized risk factor for coronary atherosclerosis and
increased risk of myocardial infarction [82], and coronary calcification
is an equivalent of coronary atherosclerosis that is independently as-
sociated with markedly increased risk of cardiovascular disease and
myocardial infarction [83]. Air pollutants are increasingly being re-
cognized for their deleterious effect on health, including increased risk
of atherosclerosis and CHD [84] or mortality [85].

Emerging evidence suggests that circulating GGT fractions may be
selectively associated with specific cardiovascular risk factors. Using
the Offspring Cohort of the Framingham Heart Study, Franzini et al.
[86] showed that circulating GGT fractions differ in the strength of their
correlation with specific cardiovascular risk factors. Thus, big-GGT
correlated with plasma triglycerides, whereas medium, small, and free
fractions correlated with alcohol consumption; medium and small GGT
correlated with C-reactive protein and big and free fractions also cor-
related with plasminogen activator inhibitor-1. Furthermore, body mass
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index, blood pressure, glucose and triglycerides correlated with big and
free GGT fractions. Overall, big-GGT was the fraction to correlate most
frequently with cardiovascular risk factors [86].

Although the relationship between GGT and cardiovascular risk
factors seems to be genetically determined, evidence for this is limited.
Whitfield et al. [30]. suggested that significant correlations between
GGT and risk factors such as body mass index, serum lipids, plasma
lipoproteins, glucose, insulin or blood pressure were more attributable
to genetic factors that affect both these risk factors and GGT than to
environmental factors. Moreover, a study in baboons showed a sig-
nificant impact of genetic factors on the relationship between circu-
lating albumin – another marker of liver function - and cardiovascular
risk factors, but not on the relationship of GGT with these factors [32].
This issue, however, remains largely under-investigated.

In conclusion, evidence from epidemiological, clinical and experi-
mental studies shows that GGT is associated with an array of cardio-
metabolic risk factors and comorbidities, with an established role in the
development of atherosclerosis, CHD or CHD-related clinical events. It
has been demonstrated that factors, conditions or comorbidities asso-
ciated with cardio-metabolic risk tend to cluster in subjects with ele-
vated GGT activity. In this regard, GGT may be seen as a marker of
increased cardiovascular risk in general. GGT activity is controlled by
both genetic and environmental factors. In the absence of specific dis-
eases affecting tissues or organs, particularly those with the highest
GGT activity, elevated GGT activity may reflect increased stress on the
cells from various sources. The intricate association between GGT and
cardio-metabolic risk factors raises questions as to whether GGT is di-
rectly involved in the pathophysiology of atherosclerosis and CHD (a
risk factor) or is simply an epiphenomenon of co-existing cardio-me-
tabolic risk factors (a risk marker).

3.3. GGT, alcohol consumption and atherosclerotic risk

GGT is considered a sensitive marker of alcohol use. Studies in large
populations have shown that even moderate drinking is associated with
higher levels of GGT activity than abstainers [87]. Alcohol consumption
and obesity – another frequent factor associated with alcohol use and
elevated GGT activity – seem to be additive in elevating GGT activity
because they may synergistically increase metabolic burden and liver
injury [88]. Thus exclusion of alcohol consumers and overweight in-
dividuals from the reference population would possibly yield upper
normal limits of GGT activity< 60 U/L [88].

Alcohol consumption was considered to potentially modify the as-
sociation between GGT and the risk of CHD. For this reason, epide-
miological studies that have assessed the association between GGT and
the risk of CHD have adjusted for alcohol use. The current view is that
moderate drinking has protective effects with respect to atherosclerosis
and CHD risk. Studies that have investigated the association between
alcohol use and atherosclerosis did not show a negative impact of al-
cohol on initiation or progression of atherosclerosis [89–92]. A recent
systematic review of 13 cardiac biomarkers showed that moderate al-
cohol consumption was associated with favorable changes in several of
these biomarkers, including higher levels of high density lipoprotein
cholesterol and adiponectin and lower levels of fibrinogen, providing
indirect evidence for a protective effect of moderate alcohol use on CHD
risk [93]. A recent study of 1,937,360 patients from the CALIBER
(Cardiovascular research using Linked Bespoke studies and Electronic
health Records) programme showed that heavy drinking conferred an
increased risk of unheralded coronary death, heart failure, cardiac ar-
rest, intracerebral hemorrhage and peripheral arterial disease but a
lower risk of CHD entities, such as myocardial infarction and stable
angina [94]. Thus, although the relationship between GGT, alcohol and
the risk for atherosclerosis and CHD is complex, the atherosclerotic risk
clustered in subjects with elevated GGT levels seems to be independent
and unrelated to alcohol per se.

3.4. GGT and outcome in patients with CHD

Population-based studies have signalled a higher risk for CHD-re-
lated mortality in individuals with pre-existing CHD, particularly in
those with documented prior myocardial infarction [39]. Coronary
angiographic studies have supported, to a degree, the hypothesis that
pre-existing CHD may strengthen the association of GGT with mortality.
A study of 469 patients with angiographic CHD [95] showed a sig-
nificantly higher risk of cardiac mortality (25.2% vs. 13.9%) at 6 years
in subjects with GGT> 40 U/L versus those with GGT < 40 U/L in the
subset of patients with previous myocardial infarction (n = 262), but
not in those without. The highest risk for cardiac events was observed
over the first 2 years of follow-up. A combination of higher GGT
(> 40 U/L), previous myocardial infarction and multivessel disease
identified a subgroup of patients (n = 168) with the highest risk for
cardiac events at 6 years [95]. This association remained significant
after adjustment for potential confounders, including alcohol con-
sumption. The Ludwigshafen Risk and Cardiovascular Health Study was
another study to investigate the association between GGT and mortality
in 2556 subjects with angiographic CHD and 699 subjects without, over
a mean follow-up of 7.75 years [96]. In the total cohort and in subjects
with angiographic CHD, all-cause and cardiovascular mortality in-
creased progressively with increasing GGT activity. Analysis of subjects
with angiographic CHD showed that in subjects with GGT activity in the
2nd to 4th quartiles versus those with activity in the 1st quartile the
adjusted risk for all-cause mortality increased by 10% (P = 0.486),
25% (P = 0.082) and 59% (P < 0.001) and the risk for cardiovascular
mortality increased by 29% (P = 0.174), 55% (P= 0.009) and 77%
(P = 0.001), respectively. However, the risk increase for all-cause or
cardiovascular mortality in subjects with angiographic CHD did not
differ to the risk in the entire cohort [96]. In another study of 1152
participants undergoing rehabilitation after an acute coronary syn-
drome, the risk of fatal or non-fatal coronary events was 21%, 32% and
75% higher for patients in the 2nd to 4th GGT quartiles compared with
the 1st quartile (P for trend =0.024) at 8-year follow-up [97]. Notably,
the risk of all-cause mortality was slightly higher than the risk of car-
diovascular mortality. A recent study from our group investigated the
association between GGT and mortality or cardiovascular events in
5501 patients with angiographic CHD. In patients with GGT activity in
the 1st, 2nd and 3rd tertiles, respective 3-year all-cause mortality was
7.1%, 7.2% and 13.9% and cardiac mortality was 4.1%, 3.6% and 7.9%.
After adjustment, GGT was independently associated with a 30%
(P < 0.001) and 21% (P = 0.005) increase in the adjusted risk of all-
cause and cardiac mortality, respectively, for each standard deviation
increment in log-GGT [98]. In another recent study of 2534 patients
with acute coronary syndromes treated with percutaneous coronary
intervention, we found a 24% increase (P = 0.002) in 3-year mortality
for each standard deviation increment in log-GGT [99]. However, when
cause-specific mortality was analysed, GGT was only associated with
the risk of non-cardiac mortality (adjusted HR = 1.35 [1.09–1.66];
P = 0.005) and not with the risk of cardiac mortality (adjusted
HR = 1.16 [0.97–1.38]; P = 0.098) [99].

Studies investigating the association between GGT and extent of
coronary atherosclerosis have shown mixed results. A recent study of
442 patients with stable CHD showed a weak but significant correlation
between GGT activity and extent of coronary atherosclerosis as assessed
by the SYNTAX score [100]. Another study of 259 subjects undergoing
computed tomography angiography showed that GGT correlated with
atherosclerotic plaque burden and noncalcified plaques [101], which
are known to be prone to rupture and subsequent coronary events.
Conversely, a study by Saely et al. [102] which included 1000 patients
who underwent coronary angiography, showed that GGT was asso-
ciated with metabolic syndrome but not with the extent of coronary
atherosclerosis, irrespective of the association between GGT and mor-
tality [102].

Elevated GGT has been implicated in several other conditions in
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CHD. For example, studies have shown an association between elevated
GGT activity and the risk of major adverse cardiac events [103], no-
reflow [104] or contrast-induced acute kidney injury [105] after pri-
mary percutaneous coronary intervention in patients with acute myo-
cardial infarction. Other studies have reported higher GGT levels in
patients with syndrome X [106] microvascular dysfunction [107], en-
dothelial dysfunction [108], carotid artery plaques [109], carotid in-
tima media thickness [110], arterial stiffness [111] coronary slow flow
[112] or higher risk of in-stent restenosis after coronary stent im-
plantation [113]. Although such associated conditions impact un-
favorably on prognosis in patients with CHD, causality has not been
proven.

In conclusion, available evidence suggests that elevated GGT levels
are associated with increased risk of mortality in patients with CHD.
However, many aspects of the association between elevated GGT and
outcomes of such patients remain unclear. In the absence of compara-
tive studies in subjects with and without CHD, the hypothesis that pre-
existing CHD may strengthen the association between GGT and mor-
tality remains untested. One possibility is that subjects with CHD are at
a generally increased risk of cardiovascular events and CHD-related
mortality. Cardiovascular risk factors – known to be more frequent in
subjects with CHD – are closely correlated with GGT. Thus, dissecting
the intricate relationship and interdependence between cardiovascular
risk factors, GGT, and CHD remains difficult. Thus, at present it remains
unknown whether GGT per se contributes to poorer outcome in subjects
with CHD, or is simply an epiphenomenon of cardiovascular risk factors
clustered in subjects with elevated levels of the enzyme. Some studies
have suggested a stronger association of GGT with all-cause than with

cardiac mortality [97], or even loss of the association between GGT and
cardiac mortality after adjustment for cardio-metabolic risk factors
[99]. Furthermore, angiographic studies may offer limited adjustment
for factors and comorbidities other than cardiovascular risk factors.
These factors, however, may contribute to increased overall mortality
by increasing the risk of non-cardiac mortality. Although some studies
have shown an association between GGT and progression of coronary
calcium [80] no studies have assessed whether subjects with higher
GGT level show accelerated progression of coronary atherosclerosis
compared to those with lower levels of the enzyme. Finally, it has been
suggested that percutaneous coronary intervention may abolish or at
least attenuate the association of GGT with coronary events [95].
Moreover, contemporary patients with CHD are treated with statins or
other secondary prevention measures which may further attenuate the
association between GGT and outcome. Experimental data suggests that
statins may supress GGT expression in aortic atherosclerotic plaques in
mice [114]. These drugs also stabilize atherosclerotic plaques and re-
duce coronary events, and in high doses, promote atherosclerosis re-
gression. These factors may lead to attenuation of the association be-
tween GGT with coronary events or cardiac mortality in contemporary
patients with CHD.

4. Mechanisms of association between GGT and the risk of CHD

Knowledge of the underlying mechanisms of the association be-
tween GGT and increased risk of CHD and CHD-related outcomes is
incomplete and remains hypothetical. In principle, however, these
mechanisms may belong to 2 categories. First, GGT activity is known to

Fig. 1. Proposed mechanisms of participation of gamma-glutamyl transferase (GGT) in the pathophysiology of coronary heart disease. Cys = cysteine; Glu = glutamic acid;
Gly = glycine; GSH = glutathione; LDL = low-density lipoprotein; oxLDL = oxidized LDL.
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be closely correlated with cardio-metabolic risk. As discussed earlier in
this review, an elevated circulating level of GGT was closely correlated
with traditional cardiovascular risk factors, systemic inflammation,
metabolic syndrome, increased oxidative stress and several co-mor-
bidities, all of which increase the risk of CHD or CHD-related adverse
events. Thus, a worse cardiovascular risk profile may explain the in-
creased risk of CHD in subjects with elevated GGT activity levels. Some
studies suggest that GGT does not offer incremental risk information
beyond that provided by concomitant cardiovascular risk factors
[99,115,116]. Second, there is evidence, mostly obtained in the ex-
perimental setting, that GGT may be involved directly in the patho-
physiology and promotion of atherosclerosis through generation of re-
active oxygen species, and in turn, by oxidative reactions initiated by
these species in atherosclerotic plaques (Fig. 1). Stark et al. [117] were
the first investigators to propose that G-SH cleavage catalysed by GGT
leads to production of cysteinyl-glycine dipeptide, which retains the
thiol group and is a more reactive and stronger reducing agent than G-
SH (Fig. 1). Subsequent studies have confirmed that cysteinyl-glycine,
but not G-SH, is responsible for generation of reactive oxygen species
[118]. The cysteinyl-glycine moiety acts as a strong reducing agent of
iron from ferric (Fe3+) to ferrous (Fe2+) form, which participates in
the production of reactive oxygen species including super-oxide and
hydrogen peroxide [119,120].These species have multiple cellular tar-
gets and promote (per)oxidation of several cellular components, in-
cluding low-density lipoproteins [121].

Studies suggest that these reactions occur within atherosclerotic
plaques and they represent the most widely accepted mechanism for
direct participation of GGT in the pathophysiology of atherosclerosis.
Research from Pisa University in Italy has contributed greatly to our
understanding of the role of GGT in the development of atherosclerosis,
demonstrating the presence of catalytically active GGT within cerebral,
carotid and coronary artery atherosclerotic plaques, co-localized with
oxidized lipids and CD68 + foam cells [121–123]. Franzini et al. [124]
demonstrated significantly higher GGT activity in atheroma from the
carotid artery compared with normal arterial tissue and demonstrated a
serum-like GGT protein, indicating a potential serum origin of GGT
found in atherosclerotic plaques. Moreover, this study showed the
presence of GGT mRNA transcribed from the GGT-1 gene within the
carotid plaques. In addition, analysis of plaque extracts revealed the
presence of free and protein-bound cysteinyl-glycine dipeptide, offering
further evidence for the occurrence of pro-oxidant reactions in ather-
osclerotic plaques catalysed by GGT reaction products [124]. More
recently, Pucci et al. [125] showed a link between GGT activity in
atherosclerotic plaques and indices of plaque instability in a study of 65
patients undergoing carotid plaque endarterectomy. Big-GGT fraction
was the only fraction found in plaques and plaque big-GGT correlated
with plaque cholesterol content and plasma big- and free- GGT frac-
tions. Importantly, higher big-GGT activity was found in thin-cap fi-
broatheromas and this correlated with histologic indices of plaque in-
stability such as larger necrotic zone, higher cholesterol content and
greater macrophage infiltration [125].These studies strongly suggest a
role of GGT in the pathophysiology of atherosclerosis, including plaque
progression, instability and rupture [124,125].

5. Concluding remarks and perspective

Large epidemiological studies suggest an association between ele-
vated circulating GGT levels and the risk of incident CHD or CHD-re-
lated mortality. However, the evidence linking GGT activity with acute
coronary events is weaker and inconsistent. Ample evidence suggests an
inherent association between GGT and a plethora of cardio-metabolic
risk factors, including traditional cardiovascular risk factors, metabolic
syndrome, systemic inflammation, oxidative stress burden and various
comorbidities that incur a negative impact on prognosis. In this regard,
GGT seems to fulfil Vasan's criteria as a biomarker of cardiovascular
risk [126]. Experimental studies and studies involving human

atherosclerotic plaques have demonstrated the presence of catalytically
active GGT in human atherosclerotic plaques and a correlation between
GGT activity and indices of plaque instability. These studies support the
possibility of direct involvement of GGT in the pathophysiology of
atherosclerosis and related clinical events. Conversely, a number of
factors speak against such a role. Such factors include the intricate re-
lationship between GGT and cardio-metabolic risk factors, the lack of
consistent evidence of an association between GGT and acute coronary
events or extent of coronary atherosclerosis, and the failure to improve
risk prediction for CHD or CHD-related outcomes by adding GGT to
conventional cardiovascular risk factors. Thus, the crucial question of
whether GGT plays a direct role in the pathophysiology of CHD or is
simply an epiphenomenon of coexisting cardiovascular risk has not
been definitively answered and Hill's criteria [127] for causality be-
tween GGT and CHD are not fulfilled. It also may be hypothesized that
GGT serves as a bridging mechanism linking cardiovascular risk factors
with atherosclerosis or CHD. Exploration of molecular mechanisms of
GGT involvement in the pathophysiology of CHD and eventual use of
interventions to reduce circulating GGT activity and longitudinally as-
sess clinical outcomes need to be addressed in future studies. Although
strong GGT inhibitors are available, most of them are highly toxic for
human use. Clarification of the role of GGT in human health, and
particularly in cardiovascular disease, will remain a fascinating re-
search field in the foreseeable future.
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